Fryns-like multiple congenital anomalies syndrome with 1,13 Mb chromosome 16p13.11 deletion detected by array-comparative genomic hybridization

J. Martinovic-Bouriel(1,2), C. Fallet-Bianco(3), B. Simon-Bouy(4), J. Michel(5), E. Alix(5), D. Sanlaville(5)

(1) IAP-HP, Unit of Fetal Pathology, Antoine Béclère Hospital, Clamart, France
(2) IAP-HP, Department of Neurology, Saint-Anne Hospital, Paris, France
(3) IAP-HP, Department of Pathology, Saint Ouen L’Aumône, France
(4) Cytogenetics Laboratory, Centre Hospitalier de Versailles, Le Chesnay, France
(5) Cytogenetics Department, Hospices Civils de Lyon and UCBL1, Lyon, France

BACKGROUND

Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16.

CASE REPORT

We present a 27-week fetus with Fryns Syndrome (FS)-like phenotype associating growth restriction, dysmorphic features with flat, coarse facies, depressed nasal bridge, long philtrum, retrognathia, dysmorphic features with flat, coarse facies, defects and terminal phalangeal hypoplasia, as well as cerebral anomalies with pachygyria, hypoplastic cerebellum and corpus callosum. This deletion includes several genes, in particular NDE1 (Figure 6). This deletion occurred de novo, and should be presumed as a cause of this multiple congenital anomalies syndrome. This deletion includes several genes, in particular NDE1 (Figure 6). Recurrent deletions in 16p13.11 chromosomal region have been previously reported and have been associated with epilepsy, multiple congenital anomalies, and cognitive impairment. Recently, based on Nde1-null mice experiment, it was proposed that NDE1 have an essential role in human cerebral cortical neurogenesis. Moreover NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. So, NDE1 haploinsufficiency could explain cerebral malformation observed in the fetus. Nevertheless other malformations described in the fetus have not been previously reported in patients with this 16p13.11 deletion.

REFERENCES


METHODS

Oligonucleotide aCGH was performed with the Agilent Human Genome CGH Microarray Kit 180K, according to the manufacturer’s instructions (protocol version 4.0), as previously described [Schluth-Bolland et al., 2008]. Data were analyzed with the CGH Analytics software platform (Agilent). Data were extracted with Feature Extraction 10.7.3.1 software and analyzed with WorkBench 5.0 software, with the following parameters: window 0.2 Mb, ADM2 threshold 6.0.

RESULTS

Array CGH revealed a 1.13 Mb 16p13.11 deletion in the fetus between genomic positions 15,039,224-16,174,807 (hg18) (Figure 4). For confirmation of the a CGH data, we carried out FISH with the BAC clone RP11-380018 (16p13.11) and 16qter (16qtel48), control probe, from Cytocell company (Figure 5). This deletion occurred de novo, and should be presumed as a cause of this multiple congenital anomalies syndrome. This deletion includes several genes, in particular NDE1 (Figure 6). Recurrent deletions in 16p13.11 chromosomal region have been previously reported and have been associated with epilepsy, multiple congenital anomalies, and cognitive impairment. Recently, based on Nde1-null mice experiment, it was proposed that NDE1 have an essential role in human cerebral cortical neurogenesis. Moreover NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. So, NDE1 haploinsufficiency could explain cerebral malformation observed in the fetus. Nevertheless other malformations described in the fetus have not been previously reported in patients with this 16p13.11 deletion.

CONCLUSION

We conclude that phenotypes similar to FS, however without diaphragmatic hernia, can be caused by a new clinically identifiable chromosome deletion syndrome at 16p13.11 including growth retardation, genito-urinary malformations, skeletal anomalies with costo-vertebral malsegmentation defects and terminal phalangeal hypoplasia, as well as cerebral anomalies with pachygyria, hypoplastic corpus callosum and cerebellum. This case expands the clinical phenotype described in patient with 16p13.11 microdeletion. We also conclude that array CGH should be performed prior to the definite diagnosis of FS in order to provide a causal explanation and an accurate genetic counseling to the family.